skip to main content


Search for: All records

Creators/Authors contains: "Okabe, Nobuhiro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    One of the key questions on active galactic nuclei (AGN) in galaxy clusters is how AGN could affect the formation and evolution of member galaxies and galaxy clusters in the history of the Universe. To address this issue, we investigate the dependence of AGN number fraction (fAGN) on cluster redshift (zcl) and distance from the cluster center (R$/$R200). We focus on more than 27000 galaxy groups and clusters at 0.1 < zcl < 1.4 with more than 1 million member galaxies selected from the Subaru Hyper Suprime-Cam. By combining various AGN selection methods based on infrared (IR), radio, and X-ray data, we identify 2688 AGN. We find that (i) fAGN increases with zcl and (ii) fAGN decreases with R$/$R200. The main contributors to the rapid increase of fAGN towards high-z and cluster center are IR- and radio-selected AGN, respectively. These results indicate that the emergence of the AGN population depends on the environment and redshift, and galaxy groups and clusters at high z play an important role in AGN evolution. We also find that cluster–cluster mergers may not drive AGN activity in at least the cluster center, while we have tentative evidence that cluster–cluster mergers could enhance AGN activity in the outskirts of (particularly massive) galaxy clusters.

     
    more » « less
  2. ABSTRACT

    This paper reports our discovery of the most massive supercluster, termed the King Ghidorah Supercluster (KGSc), at z = 0.50–0.64 in the Third Public Data Release of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP PDR3) over 690 deg2, as well as an initial result for a galaxy and dark matter mapping. The primary structure of the KGSc comprises triple broad weak-lensing (WL) peaks over 70 comoving Mpc. Such extensive WL detection at z > 0.5 can only currently be achieved using the wide-field high-quality images produced by the HSC-SSP. The structure is also contiguous with multiple large-scale structures across a ∼400 comoving Mpc scale. The entire field has a notable overdensity (δ = 14.7 ± 4.5) of red-sequence clusters. Additionally, large-scale underdensities can be found in the foreground along the line of sight. We confirmed the overdensities in stellar mass and dark matter distributions to be tightly coupled and estimated the total mass of the main structure to be 1 × 1016 solar masses, according to the mock data analyses based on large-volume cosmological simulations. Further, upcoming wide-field multi-object spectrographs such as the Subaru Prime Focus Spectrograph may aid in providing additional insights into distant superclusters beyond the 100 Mpc scale.

     
    more » « less
  3. Abstract

    We present herein a systematic X-ray analysis of blue galaxy clusters at z = 0.84 discovered by the Subaru telescope. The sample consisted of 43 clusters identified by combining red-sequence and blue-cloud surveys, covering a wide range of emitter fractions (i.e., 0.3–0.8). The spatial extent of the over-density region of emitter galaxies was approximately 1 Mpc in radius. The average cluster mass was estimated as 0.6(<1.5) × 1014 M⊙ from the stacked weak-lensing measurement. We analyzed the XMM-Newton archival data, and measured the X-ray luminosity of the hot intracluster medium. As a result, diffuse X-ray emission was marginally detected in 14 clusters, yielding an average luminosity of 5 × 1042 erg s−1. To the contrary, it was not significant in 29 clusters. The blue clusters were significantly fainter than the red-dominated clusters, and the X-ray luminosity did not show any meaningful correlation either with emitter fraction or richness. The X-ray surface brightness was low, but the amount of gas mass was estimated to be comparable to that observed in the 1013–1014 M⊙ cluster. Based on the results, we suggest that the blue clusters are at the early formation stage, and the gas is yet to be compressed and heated up to produce appreciable X-rays. Follow-up spectroscopic measurements are essential to clarify the dynamical status and co-evolution of galaxies and hot gas in the blue clusters.

     
    more » « less
  4. ABSTRACT

    It is clear that within the class of ultra-diffuse galaxies (UDGs), there is an extreme range in the richness of their associated globular cluster (GC) systems. Here, we report the structural properties of five UDGs in the Perseus cluster based on deep Subaru/Hyper Suprime-Cam imaging. Three appear GC-poor and two appear GC-rich. One of our sample, PUDG_R24, appears to be undergoing quenching and is expected to fade into the UDG regime within the next ∼0.5 Gyr. We target this sample with Keck Cosmic Web Imager (KCWI) spectroscopy to investigate differences in their dark matter haloes, as expected from their differing GC content. Our spectroscopy measures both recessional velocities, confirming Perseus cluster membership, and stellar velocity dispersions, to measure dynamical masses within their half-light radius. We supplement our data with that from the literature to examine trends in galaxy parameters with GC system richness. We do not find the correlation between GC numbers and UDG phase space positioning expected if GC-rich UDGs environmentally quench at high redshift. We do find GC-rich UDGs to have higher velocity dispersions than GC-poor UDGs on average, resulting in greater dynamical mass within the half-light radius. This agrees with the first order expectation that GC-rich UDGs have higher halo masses than GC-poor UDGs.

     
    more » « less
  5. Abstract

    We present our determination of the baryon budget for an X-ray-selected XXL sample of 136 galaxy groups and clusters spanning nearly two orders of magnitude in mass (M500 ∼ 1013–1015 M⊙) and the redshift range 0 ≲ z ≲ 1. Our joint analysis is based on the combination of Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) weak-lensing mass measurements, XXL X-ray gas mass measurements, and HSC and Sloan Digital Sky Survey multiband photometry. We carry out a Bayesian analysis of multivariate mass-scaling relations of gas mass, galaxy stellar mass, stellar mass of brightest cluster galaxies (BCGs), and soft-band X-ray luminosity, by taking into account the intrinsic covariance between cluster properties, selection effect, weak-lensing mass calibration, and observational error covariance matrix. The mass-dependent slope of the gas mass–total mass (M500) relation is found to be $1.29_{-0.10}^{+0.16}$, which is steeper than the self-similar prediction of unity, whereas the slope of the stellar mass–total mass relation is shallower than unity; $0.85_{-0.09}^{+0.12}$. The BCG stellar mass weakly depends on cluster mass with a slope of $0.49_{-0.10}^{+0.11}$. The baryon, gas mass, and stellar mass fractions as a function of M500 agree with the results from numerical simulations and previous observations. We successfully constrain the full intrinsic covariance of the baryonic contents. The BCG stellar mass shows the larger intrinsic scatter at a given halo total mass, followed in order by stellar mass and gas mass. We find a significant positive intrinsic correlation coefficient between total (and satellite) stellar mass and BCG stellar mass and no evidence for intrinsic correlation between gas mass and stellar mass. All the baryonic components show no redshift evolution.

     
    more » « less
  6. Abstract

    We present the first results of a pilot X-ray study of 37 rich galaxy clusters at 0.1 < z < 1.1 in the Hyper Suprime-Cam Subaru Strategic Program field. Diffuse X-ray emissions from these clusters were serendipitously detected in the XMM-Newton fields of view. We systematically analyze X-ray images of 37 clusters and emission spectra of a subsample of 17 clusters with high photon statistics by using the XMM-Newton archive data. The frequency distribution of the offset between the X-ray centroid or peak and the position of the brightest cluster galaxy was derived for the optical cluster sample. The fraction of relaxed clusters estimated from the X-ray peak offsets in 17 clusters is 29 ± 11(±13)%, which is smaller than that of the X-ray cluster samples such as HIFLUGCS. Since the optical cluster search is immune to the physical state of X-ray-emitting gas, it is likely to cover a larger range of the cluster morphology. We also derive the luminosity–temperature relation and found that the slope is marginally shallower than those of X-ray-selected samples and consistent with the self-similar model prediction of 2. Accordingly, our results show that the X-ray properties of the optical clusters are marginally different from those observed in the X-ray samples. The implication of the results and future prospects are briefly discussed.

     
    more » « less